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1,3-DIPOLAR CYCLOREVERSION OF A 1,3,4-OXADIAZOLIDINE AS A
CONTROLLED AZOMETHINE IMINE SURROGATE FOR
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Summary: Azomethine imines were generated in a controlled manner through a thermally allowed
1,3-dipolar cycloreversion of 1,3,4-oxadiazolidines and subsequently trapped with dipolarophiles.
This method results in the construction of the pyrazolidine heterocycles. A new method for the
selective formation of the key semicarbazide substrate, from benzylidene hydrazone, is also
disclosed. Copyright © 1996 Elsevier Science Ltd

The search for selective cholecystokinin (CCK) receptor ligands has lead to the development of potent CCK-A
and CCK-B antagonists.! From an interesting pyrazolidinone series, LY288513 emerged as a very promising
pre-clinical candidate.?2 Contemplating the pyrazolidine heterocycle as an attractive subunit, we considered
general synthetic approaches for isosteres and analogues, such as pyrazolidine 1, and sought access via 1,3-
dipolar cycloaddition chemistry.3 The synthesis of pyrazolidines via either intramolecular or intermolecular 1,3-
dipolar cycloaddition has been extensively documented.# During the course of our work on the preparation of 1
and analogues, however, we found a novel approach for the formation and trapping of azomethine imines,
which we discuss herein. Furthermore, synthesis of the key semicarbazide 2 was accomplished in a uniquely

selective manner.
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Condensation of hydrazide 35 with paraformaldehyde in toluene, either in the presence or absence of the
dipolarophile trans-stilbene, under azeotropic water removal resulted in the formation of the centrosymmetric
hexahydrotetrazine 4 in 67% yield. Oppolzer had previously noted hexahydrotetrazine formation under similar
conditions employing substoichiometric dipolarophile3.6 and found that these heterocycles do not dissociate
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back to the dipole at temperatures up to 180 °C. Reaction of hydrazide 3 under the same conditions, but with
excess methyl glyoxylate hemiacetal (5),7 afforded oxadiazolidine 6 as the predominate product.?8 We were
unable to isolate any dipolar cycloadduct with trans-stilbene, a very poor dipolarophile, under these conditions.

Scheme 1.
(o) 0
Me)j\l}l/\l\'l/\ ph  (CH20)n HN “Ph toluene ph” N —N)LMe
PN NS M g HN \n/Me MeO2C__OMe Meozc—ko)'---cowe
o} 67% o) 70% OH
4 3 5 6

We had a similar experience with semicarbazide 7 and defined conditions under which hexahydrotetrazine 8
or oxadiazolidine 9 could be formed in excellent yields. Likewise, under some conditions up to 10% of dipolar
cycloadducts 11-13 could be isolated, but the major product was oxadiazolidine 9. Although Oppolzer had
demonstrated the thermal stability of the hexahydrotetrazine series, the oxadiazolidine stability remained
unknown and allowed us to consider its potential for 1,3-dipolar cycloreversion.® The mass spectrometric
behavior of oxadiazolidines, using electron impact induced fragmentation, has been demonstrated to mimic a

retro-1,3-dipolar cycloaddition.!1® Moreover, we reasoned that generating high concentrations of dipole 10 in
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the absence of a suitable dipolarophile (or with an ineffective dipolarophile) would result in dimerization, and a
controlled formation via cycloreversion of 9 might be preferred.

1,3,4-Oxadiazolidine 9b was efficiently prepared in 70% yield by heating semicarbazide 7 with excess
hemiacetal 5 at reflux in toluene (3 h). NMR analysis of the oxadiazolidine structure proved to be consistent
with reported8¢ spectroscopic data (84.2 ppm-C2; 6.13 ppm, s, C2H; 91.4 ppm-C3; 5.35 ppm, s, C5H), along
with other characteristic spectral data (m/z 477, 479 and Apax = 247).11 The oxadiazolidine 9b undergoes a
retro-1,3-dipolar cycloaddition, followed by cycloaddition, during slow addition (3 h) to a solution of trans-
stilbene in toluene containing catalytic p-TsOH at reflux. After continued stirring at this temperature for 22 h,
the cycloadduct 11 (mp 192 °C) was isolated in 92% yield. The same cycloreversion-cycloaddition reaction to
produce 11 was also possible under purely thermal conditions using xylenes as the solvent.

Direct reaction of semicarbazide 7 with hemiacetal S and trans-stilbene in toluene (catalytic p-TsOH, HyO
removal) leads primarily to formation of 9b as a complex mixture with <10% yield of the desired product 11. It
was possible, however, to pre-form oxadiazolidine 9b in situ followed by slow addition to the dipolarophile to
afford cycloadduct 11 in 31% yield. However, the most efficient method for producing 11 was the thermal
cycloreversion-cycloaddition of 9b in the presence of a dipolarophile as described above. Therefore, this
method!2 was extended in a similar manner and 1,3-dipole 10 could be generated and trapped with either
styrene or DMAD, furnishing the corresponding adducts 12 (56%) or 13 (60%), respectively. The J34=7.5
Hz and J4,5 = 10.5 Hz coupling constants for pyrazolidine 11 are suggestive of a cis disposition between the
neighboring ester and phenyl moieties and trans between the two phenyl moieties.!3 This stereochemical
outcome is also consistent with the kinetically preferred endo transition state# and confirmed by the rapid
equilibration (NaOMe, MeOH) to the thermodynamically more stable trans, trans-isomer.4

1,3,4-Oxadiazolidine 9a was similarly formed in good yield from the semicarbazide 7 and paraformaldehyde
as above. However, under the cycloreversion-cycloaddition conditions it was less effective to produce the

desired pyrazolidine adducts. Yields with the aforementioned dipolarophiles were typically < 50%.
Scheme 3.
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Preparation of the requisite semicarbazide was first attempted by reaction of hydrazine (14) with Ar-N=C=0,
but only the dimeric product 15 was obtained (98%, Scheme 3).14 Since alkylhydrazines are known to be more
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nucleophilic at the substituted nitrogen, we sought to minimize protection and reacted benzylidene hydrazine
(16)15 with the isocyanate.1® Semicarbazone 17 (mp 210 °C) precipitated in 85% yield with analytical purity.
Reaction of commercial p-bromophenyl semicarbazide with benzaldehyde proved to be a less efficient route to
semicarbazone 17. Reduction of the imine bond under nonhydrogenolytic conditions with NaCNBH3 afforded
the desired semicarbazide 7 (mp 170 °C) in 88% yield. The simple hydrazide 3 was prepared in 70% yield by
heating benzyl hydrazine (18) in MeOAc.5

In summary, we have demonstrated a novel method for the generation of an azomethine imine from a 1,3,4-
oxadiazolidine under controlled conditions and an efficient means for trapping it with dipolarophiles. The
cycloreversion of oxadiazolidine 9 offers controlled formation of the dipole, preventing unwanted dimerization
to the hexahydrotetrazine. The semicarbazide precursor was also selectively prepared in a mild and potentially

very general manner.
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